Solid-state 35/37 Cl NMR detection of chlorine atoms directly bound to paramagnetic cobalt(II) ions in powder samples.
Lukas BauderGang WuPublished in: Magnetic resonance in chemistry : MRC (2023)
We report high-quality solid-state 35/37 Cl NMR spectra for chlorine atoms directly bonded to paramagnetic cobalt(II) ions (high spin S = 3/2) in powered samples of CoCl 2 , CoCl 2 ·2H 2 O, CoCl 2 ·6H 2 O, and CoCl 2 (terpy) (terpy = 2,2':6',2″-terpyridine). Because solid-state 35/37 Cl NMR spectra for paramagnetic cobalt(II) compounds often cover an extremely wide spectral range, they were recorded in this work in the form of variable-offset cumulative spectra. Solid-state 35/37 Cl NMR measurements were performed at three magnetic fields (11.7, 14.1, and 16.5 T) and analysis of data yielded information about 35/37 Cl quadrupole coupling and hyperfine coupling tensors in these paramagnetic cobalt(II) compounds. Experimental 35/37 Cl NMR tensors were found to be in reasonable agreement with quantum chemical calculations based on a periodic DFT method implemented in BAND.
Keyphrases