Genetic diversity of Oxytropis section Xerobia (Fabaceae) in one of the centres of speciation.
Alla KholinaMarina KozyrenkoElena V ArtyukovaDenis V SandanovInessa SelyutinaPublished in: Genetica (2021)
The genetic diversity and phylogenetic relationships of Oxytropis caespitosa, O. grandiflora, O. eriocarpa, O. mixotriche, O. nitens, O. peschkovae and O. triphylla, section Xerobia subgenus Oxytropis, in one of the main speciation centres of the genus Oxytropis (Baikal Siberia and adjacent territories of Northeastern Mongolia) were studied based on sequence analysis of the psbA-trnH, trnL-trnF and trnS-trnG intergenic spacers of cpDNA, as well as the ITS nrDNA. Most populations are characterized by a high level of chloroplast genetic diversity (h varied from 0.327 to 1.000 and π from 0.0001 to 0.0090) due to the ancient origin for some species and to hybridization and polyploidy for others. 67 haplotypes were identified, of which six were shared. Phylogenetic relationships among species could not be satisfactorily resolved. Only the haplotypes of O. triphylla formed a group with rather high support. Probably, O. caespitosa, O. grandiflora, O. mixotriche and O. nitens constitute a single genetic complex. As regards the ITS nrDNA polymorphism, we detected only two ribotypes (RX1, RX2). Both were found in O. caespitosa, O. eriocarpa, O. mixotriche and O. peschkovae, while RX1 was present in O. nitens and O. triphylla, RX2 in O. grandiflora. The absence of diagnostic species-specific variants for the markers studied, together with the sharing of cpDNA haplotypes and nrDNA ribotypes between species, and the resulting polytomies on the phylogenetic trees, confirm the hypothesis on the hybrid origin of some of them. Obviously, the reproductive barriers within the sect. Xerobia are weak. However, morphological differences between the species of the sect. Xerobia are clearly pronounced, even when they grow in sympatry.