Assessment of the Impact of Subcutaneous Catheter Change on Glucose Control in Patients with Type 1 Diabetes Treated by Insulin Pump in Open- and Closed-Loop Modes.
Jean-Baptiste JullaPauline JacquemierElisabeth BonnemaisonGuy FagherazziHélène HanairePauline Bellicar SchaepelynckMihaela MihaileanuPr Eric RenardYves ReznikJean-Pierre RivelinePublished in: Diabetes technology & therapeutics (2024)
Introduction: Most continuous subcutaneous insulin infusion (CSII) catheters (KT) are changed every 3 days. This study aims at evaluating whether KT changes impact glucose control while under open-loop (OL) or automated insulin delivery (AID) modes. Methods: We included patients with type 1 diabetes who used Tandem t:slim x2 insulin pump and Dexcom G6 glucose sensor for 20 days in OL, then as AID. CSII and sensor glucose data in OL and for the past 20 days of 3-month AID were retrospectively analyzed. The percentage of time spent with sensor glucose above 180 mg/dL (%TAR180) was compared between the calendar day of KT change (D0), the next day (D1), and 2 days later (D2). Values were adjusted for age, gender, body mass index (BMI), hemoglobin A1c (HbA1c) at inclusion, and %TAR180 for the 2 h before KT change. Results: A total of 1636 KT changes were analyzed in 134 patients: 72 women (54%), age: 35.6 ± 15.7 years, BMI: 25.2 ± 4.7 kg/m 2 , and HbA1c: 7.5 ± 0.8%. %TAR180 in the 2 h before the KT change was 51.3 ± 37.0% in OL and 33.2 ± 30.0% in AID mode. In OL, significant absolute increases of %TAR180 at D0 versus D1 (+6.9%; P < 0.0001) or versus D2 (+6.8%; P < 0.0001) were observed. In AID, significant absolute increases of %TA180R at D0 versus D1 (+4.8%; P < 0.0001) or versus D2 (+4.2%; P < 0.0001) were also observed. Conclusion: This study shows an increase in time spent in hyperglycemia on the day of the KT change both in OL and AID modes. This additional information should be taken into account to improve current AID algorithms. ClinicalTrials.gov: NCT04939766.
Keyphrases
- body mass index
- type diabetes
- blood glucose
- glycemic control
- newly diagnosed
- end stage renal disease
- deep learning
- mental health
- healthcare
- blood pressure
- low dose
- physical activity
- high throughput
- peritoneal dialysis
- social media
- insulin resistance
- skeletal muscle
- artificial intelligence
- health information
- patient reported outcomes