Login / Signup

Time-Dependent Quantum Wave Packet Study of the Si + OH → SiO + H Reaction: Cross Sections and Rate Constants.

Alejandro Rivero SantamaríaFabrice DayouJesus Rubayo-SoneiraMaurice Monnerville
Published in: The journal of physical chemistry. A (2017)
The dynamics of the Si(3P) + OH(X2Π) → SiO(X1Σ+) + H(2S) reaction is investigated by means of the time-dependent wave packet (TDWP) approach using an ab initio potential energy surface recently developed by Dayou et al. ( J. Chem. Phys. 2013 , 139 , 204305 ) for the ground X2A' electronic state. Total reaction probabilities have been calculated for the first 15 rotational states j = 0-14 of OH(v=0,j) at a total angular momentum J = 0 up to a collision energy of 1 eV. Integral cross sections and state-selected rate constants for the temperature range 10-500 K were obtained within the J-shifting approximation. The reaction probabilities display highly oscillatory structures indicating the contribution of long-lived quasibound states supported by the deep SiOH/HSiO wells. The cross sections behave with collision energies as expected for a barrierless reaction and are slightly sensitive to the initial rotational excitation of OH. The thermal rate constants show a marked temperature dependence below 200 K with a maximum value around 15 K. The TDWP results globally agree with the results of earlier quasi-classical trajectory (QCT) calculations carried out by Rivero-Santamaria et al. ( Chem. Phys. Lett. 2014 , 610-611 , 335 - 340 ) with the same potential energy surface. In particular, the thermal rate constants display a similar temperature dependence, with TDWP values smaller than the QCT ones over the whole temperature range.
Keyphrases
  • density functional theory
  • electron transfer
  • room temperature
  • high frequency
  • mass spectrometry
  • human health