Cell Chirality of Micropatterned Endometrial Microvascular Endothelial Cells.
Samantha G ZambutoIshita JainHannah S TheriaultGregory H UnderhillBrendan A C HarleyPublished in: Advanced healthcare materials (2024)
Chirality is an intrinsic cellular property that describes cell polarization biases along the left-right axis, apicobasal axis, or front-rear axes. Cell chirality plays a significant role in the arrangement of organs in the body as well as in the orientation of organelles, cytoskeletons, and cells. Vascular networks within the endometrium, the mucosal inner lining of the uterus, commonly display spiral architectures that rapidly form across the menstrual cycle. Herein, the role of endometrial-relevant extracellular matrix stiffness, composition, and soluble signals on endometrial endothelial cell chirality is systematically examined using a high-throughput microarray. Endometrial endothelial cells display marked patterns of chirality as individual cells and as cohorts in response to substrate stiffness and environmental cues. Vascular networks formed from endometrial endothelial cells also display shifts in chirality as a function of exogenous hormones. Changes in cellular-scale chirality correlate with changes in vascular network parameters, suggesting a critical role for cellular chirality in directing endometrial vessel network organization.
Keyphrases
- endothelial cells
- endometrial cancer
- single cell
- extracellular matrix
- induced apoptosis
- high throughput
- cell therapy
- high glucose
- stem cells
- oxidative stress
- vascular endothelial growth factor
- risk assessment
- signaling pathway
- bone marrow
- mesenchymal stem cells
- endoplasmic reticulum stress
- human health
- bioinformatics analysis
- pi k akt
- walled carbon nanotubes