Mechanism of Lentinan Intestinal Absorption: Clathrin-Mediated Endocytosis and Macropinocytosis.
Ziming ZhengXianglin PanHaoyu WangZhijing WuMitchell A SullivanYuxuan LiuJunxi LiuKaiping WangYu ZhangPublished in: Journal of agricultural and food chemistry (2021)
Lentinan (LNT), a typical triple helix β-glucan extracted from Lentinus edodes, has been widely used as a functional food and an orally administered drug. However, its oral pharmacokinetics has been rarely reported. The aim of this work is to systematically study the pharmacokinetics and intestinal absorption mechanism of LNT after oral administration. Radioactive 99m-technetium (99mTc) was introduced to label LNT to determine the plasma concentration, tissue distribution, and excretion of the β-glucan in rats after oral administration. The results confirmed the absorption of LNT, with the maximal plasma concentration reached at 1 h. 5-([4,6-Dichlorotriazin-2-yl]amino)fluorescein (DTAF) was used to label LNT to explore the absorption mechanism of LNT, utilizing both a Ussing chamber and a monolayer of Caco-2 cells. These transport assays showed that LNT could penetrate through the intestine and epithelial monolayer, which was mediated by macropinocytosis and clathrin-mediated endocytosis. These findings provide a pharmacokinetic reference for LNT and help provide a greater understanding of the absorption of β-glucans in general.