A Microfluidic Ion Pump for In Vivo Drug Delivery.
Ilke UguzChristopher M ProctorVincenzo F CurtoAnna-Maria PappaMary J DonahueMagali FerroRóisín M OwensDion KhodagholySahika InalGeorge G MalliarasPublished in: Advanced materials (Deerfield Beach, Fla.) (2017)
Implantable devices offer an alternative to systemic delivery of drugs for the treatment of neurological disorders. A microfluidic ion pump (µFIP), capable of delivering a drug without the solvent through electrophoresis, is developed. The device is characterized in vitro by delivering γ-amino butyric acid to a target solution, and demonstrates low-voltage operation, high drug-delivery capacity, and high ON/OFF ratio. It is also demonstrated that the device is suitable for cortical delivery in vivo by manipulating the local ion concentration in an animal model and altering neural behavior. These results show that µFIPs represent a significant step forward toward the development of implantable drug-delivery systems.