Login / Signup

Biomass-Derived Multilayer-Structured Microparticles for Accelerated Hemostasis and Bone Repair.

Jia-Ying LiuYang HuLong LiChao WangJia WangYang LiDafu ChenXiaokang DingChuanan ShenFu-Jian Xu
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2020)
It is very desirable to develop advanced sustainable biomedical materials with superior biosafety and bioactivity for clinical applications. Herein, biomass-derived multilayer-structured absorbable microparticles (MQ x T y ) composed of starches and plant polyphenols are readily constructed for the safe and effective treatment of bone defects with intractable bleeding by coating multiple layers of quaternized starch (Q+) and tannic acid onto microporous starch microparticles via facile layer-by-layer assembly. MQ x T y microparticles exhibit efficient degradability, low cytotoxicity, and good blood compatibility. Among various MQ x T y microparticles with distinct Q+/T- double layers, MQ2T2 with outmost polyphenol layer possess the unique properties of platelet adhesion/activation and red blood cell aggregation, resulting in the best hemostatic performance. In a mouse cancellous-bone-defect model, MQ2T2 exhibits the favorable hemostatic effect, low inflammation/immune responses, high biodegradability, and promoted bone repair. A proof-of-concept study of beagles further confirms the good performance of MQ2T2 in controlling intractable bleeding of bone defects. The present work demonstrates that such biomass-based multilayer-structured microparticles are very promising biomedical materials for clinical use.
Keyphrases