Local Structure and Relaxation Dynamics in the Brush of Polymer-Grafted Silica Nanoparticles.
Yuan WeiYifan XuAntonio FaraoneMichael J A HorePublished in: ACS macro letters (2018)
When grafted to spherical nanoparticles at high grafting densities, polymers adopt a variety of conformations. Because of strong confinement by neighboring chains, portions of the polymer near the nanoparticle core are highly stretched in the concentrated polymer brush region (CPB) of the polymer layer. Farther away from the core, where the polymer is less confined, the conformation becomes more ideal in the semidilute polymer brush (SDPB) region. Using a combination of small-angle neutron scattering (SANS) and neutron spin echo (NSE) spectroscopy, we directly characterized both the structure and dynamics of the CPB and SDPB on poly(methyl acrylate) (PMA) grafted SiO 2 nanoparticles (NPs). Analysis of SANS measurements using a new core-chain-chain (CCC) model confirmed that the portion of the chain in the CPB region is highly stretched, and transitions to a more random conformation. Dynamics in the CPB region were found to be much slower than the SDPB region.