Login / Signup

A ten-gene DNA-damage response pathway gene expression signature predicts gemtuzumab ozogamicin response in pediatric AML patients treated on COGAAML0531 and AAML03P1 trials.

Mohammed O GbadamosiVivek M ShastriAbdelrahman H ElsayedRhonda E RiesOluwaseyi OlabigeNam H K NguyenAngelica De JesusYi-Cheng WangAlice DangBetsy A HirschTodd A AlonzoAlan GamisSoheil MeshinchiJatinder Kaur Lamba
Published in: Leukemia (2022)
Gemtuzumab ozogamicin (GO) is an anti-CD33 monoclonal antibody linked to calicheamicin, a DNA damaging agent, and is a well-established therapeutic for treating acute myeloid leukemia (AML). In this study, we used LASSO regression modeling to develop a 10-gene DNA damage response gene expression score (CalDDR-GEx10) predictive of clinical outcome in pediatric AML patients treated with treatment regimen containing GO from the AAML03P1 and AAML0531 trials (ADE + GO arm, N = 301). When treated with ADE + GO, patients with a high CalDDR-GEx10 score had lower complete remission rates (62.8% vs. 85.5%, P = 1.7 7 * 10 -5 ) and worse event-free survival (28.7% vs. 56.5% P = 4.08 * 10 -8 ) compared to those with a low CalDDR-GEx10 score. However, the CalDDR-GEx10 score was not associated with clinical outcome in patients treated with standard chemotherapy alone (ADE, N = 242), implying the specificity of the CalDDR-GEx10 score to calicheamicin-induced DNA damage response. In multivariable models adjusted for risk group, FLT3-status, white blood cell count, and age, the CalDDR-GEx10 score remained a significant predictor of outcome in patients treated with ADE + GO. Our findings present a potential tool that can specifically assess response to calicheamicin-induced DNA damage preemptively via assessing diagnostic leukemic cell gene expression and guide clinical decisions related to treatment using GO.
Keyphrases