Magnetic Nanoparticle-Based Surface-Assisted Laser Desorption/Ionization Mass Spectrometry for Cosmetics Detection in Contaminated Fingermarks: Magnetic Recovery and Surface Roughness.
Sara A Al-SayedMohamed O AminEntesar Al-HetlaniPublished in: ACS omega (2022)
In this work, we propose a matrix-free approach for the analysis of fingermarks (FMs) contaminated with five cosmetic products containing different active pharmaceutical ingredients (APIs) using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). For this purpose, a magnetic SALDI substrate based on Fe 3 O 4 -CeO 2 magnetic nanoparticles was prepared, characterized, and optimized for the analysis of contaminated FMs without sample pretreatment. Initially, groomed FM and cosmetic products were separately analyzed, and their major components were successfully detected. Subsequently, FMs contaminated with Ordinary serum and Skinoren, Dermovate, Bepanthen, and Eucerin creams were analyzed, and components of FM and cosmetics were detected. The stability of the cosmetics in FMs was studied over an interval of 28 days, and all components showed good stability in FM for 4 weeks. Recovery of contaminated FMs from different surfaces utilizing a few microliters of the magnetic substrate was carried out using a simple external magnetic field from ceramic, plastic, metal, and glass. Successful retrieval of the API and FM components was achieved with magnetic recovery, and glass exhibited the best recovery, whereas ceramic tile demonstrated the lowest recovery. This was supported by atomic force microscopy study, which revealed that the ceramic surface had higher roughness than the other surfaces employed in this study, which adversely affected the magnetic maneuvering. This proof-of-concept investigation extends the application of SALDI-MS in forensic analysis of contaminated FMs by exploring cosmetics as exogenous materials and their stability and recovery from different surfaces.
Keyphrases
- tyrosine kinase
- mass spectrometry
- heavy metals
- molecularly imprinted
- drinking water
- atomic force microscopy
- liquid chromatography
- risk assessment
- multiple sclerosis
- high resolution
- magnetic nanoparticles
- ms ms
- single cell
- gas chromatography
- escherichia coli
- high performance liquid chromatography
- high speed
- label free
- preterm birth
- simultaneous determination