Detection of Norovirus Recombinant GII.2[P16] Strains in Oysters in Thailand.
Leera KittigulKannika PombubpaKitwadee RuppromJinthapha ThasiriPublished in: Food and environmental virology (2022)
Human norovirus causes sporadic and epidemic acute gastroenteritis worldwide, and the predominant strains are genotype GII.4 variants. Recently, a novel GII.17[P17] and a recombinant GII.2[P16] strain have been reported as the causes of gastroenteritis outbreaks. Outbreaks of norovirus are frequently associated with foodborne illness. In this study, each of 75 oyster samples processed by a proteinase K extraction method and an adsorption-elution method were examined for noroviruses using RT-nested PCR with capsid primers. Thirteen (17.3%) samples processed by either method tested positive for norovirus genogroup II (GII). PCR amplicons were characterized by DNA sequencing and phylogenetic analysis as GII.2 (n = 6), GII.4 (n = 1), GII.17 (n = 3), and GII.unclassified (n = 3). Norovirus-positive samples were further amplified by semi-nested RT-PCR targeting the polymerase-capsid genes. One nucleotide sequence revealed GII.17[P17] Kawasaki strain. Five nucleotide sequences were identified as belonging to the recombinant GII.2[P16] strains by recombination analysis. The collected oyster samples were quantified for norovirus GII genome copy number by RT-quantitative PCR. Using the proteinase K method, GII was found in 13/75 (17.3%) of samples with a range of 8.83-1.85 × 10 4 genome copies/g of oyster. One sample (1/75, 1.3%) processed by the adsorption-elution method was positive for GII at 5.00 × 10 1 genome copies/g. These findings indicate the circulation of a new variant GII.17 Kawasaki strain and the recombinant GII.2[P16] in oyster samples corresponding to the circulating strains reported at a global scale during the same period of time. The detection of the recombinant strains in oysters emphasizes the need for continuing systematic surveillance for control and prevention of norovirus gastroenteritis.