Login / Signup

Alrecon: computed tomography reconstruction web application based on Solara.

Gianluca IoriIbrahim FoudehMustafa Alzu'biMalik Al MohammadSalman Matalgah
Published in: Open research Europe (2024)
Synchrotron X-ray computed tomography is a non-destructive 3D imaging technique that offers the possibility to study the internal microstructure of samples with high spatial and temporal resolution. Given its unmatched image quality and acquisition speed, and the possibility to preserve the specimens, there is an increasing demand for this technique, from scientific users from innumerable disciplines. Computed tomography reconstruction is the computational process by which experimental radiographs are converted to a meaningful 3-dimensional image after the scan. The procedure involves pre-processing steps for image background and artifact correction on raw data, a reconstruction step approximating the inverse Radon-transform, and writing of the reconstructed volume image to disk. Several open-source Python packages exist to help scientists in the process of tomography reconstruction, by offering efficient implementations of reconstruction algorithms exploiting central or graphics processing unit (CPU and GPU, respectively), and by automating significant portions of the data processing pipeline. A further increase in productivity is attained by scheduling and parallelizing demanding reconstructions on high performance computing (HPC) clusters. Nevertheless, visual inspection and interactive selection of optimal reconstruction parameters remain crucial steps that are often performed in close interaction with the end-user of the data. As a result, the reconstruction task involves more than one software. Graphical user interfaces are provided to the user for fast inspection and optimization of reconstructions, while HPC resources are often accessed through scripts and command line interface. We propose Alrecon, a pure Python web application for tomographic reconstruction built using Solara. Alrecon offers users an intuitive and reactive environment for exploring data and customizing reconstruction pipelines. By leveraging upon popular 3D image visualization tools, and by providing a user-friendly interface for reconstruction scheduling on HPC resources, Alrecon guarantees productivity and efficient use of resources for any type of beamline user.
Keyphrases
  • computed tomography
  • image quality
  • deep learning
  • dual energy
  • electronic health record
  • climate change
  • big data
  • positron emission tomography
  • machine learning