Deciphering atomistic mechanisms of the gas-solid interfacial reaction during alloy oxidation.
Langli LuoLiang LiDaniel K SchreiberYang HeDonald R BaerStephen M BruemmerChongming WangPublished in: Science advances (2020)
Gas-solid interfacial reaction is critical to many technological applications from heterogeneous catalysis to stress corrosion cracking. A prominent question that remains unclear is how gas and solid interact beyond chemisorption to form a stable interphase for bridging subsequent gas-solid reactions. Here, we report real-time atomic-scale observations of Ni-Al alloy oxidation reaction from initial surface adsorption to interfacial reaction into the bulk. We found distinct atomistic mechanisms for oxide growth in O2 and H2O vapor, featuring a "step-edge" mechanism with severe interfacial strain in O2, and a "subsurface" one in H2O. Ab initio density functional theory simulations rationalize the H2O dissociation to favor the formation of a disordered oxide, which promotes ion diffusion to the oxide-metal interface and leads to an eased interfacial strain, therefore enhancing inward oxidation. Our findings depict a complete pathway for the Ni-Al surface oxidation reaction and delineate the delicate coupling of chemomechanical effect on gas-solid interactions.