Sulfophenylated Terphenylene Copolymer Membranes and Ionomers.
Thomas J G SkalskiMichael AdamskiBenjamin BrittonEric M SchibliTimothy J PeckhamThomas WeissbachTakashi MoshisukiSandrine LyonnardBarbara J FriskenSteven HoldcroftPublished in: ChemSusChem (2018)
The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g-1 and exhibited proton conductivities of up to 338 mS cm-1 (80 °C, 95 % relative humidity). Small-angle X-ray scattering and small-angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm-2 ) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon-based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm-2 with oxygen and 456 mW cm-2 with air.
Keyphrases
- ionic liquid
- room temperature
- reduced graphene oxide
- high resolution
- carbon dioxide
- molecularly imprinted
- highly efficient
- induced apoptosis
- open label
- gold nanoparticles
- metal organic framework
- mass spectrometry
- multiple sclerosis
- physical activity
- double blind
- single cell
- cell therapy
- ms ms
- mental health
- oxidative stress
- cell cycle arrest
- endoplasmic reticulum stress
- stem cells
- solid state
- mesenchymal stem cells
- single molecule
- cell death
- drug release
- tandem mass spectrometry
- study protocol