Login / Signup

Green Conversion of CO2 and Propargylamines Triggered by Triply Synergistic Catalytic Effects in Metal-Organic Frameworks.

Xiao-Lei JiangYue-E JiaoSheng-Li HouLiang-Chen GengHao-Zhe WangBin Zhao
Published in: Angewandte Chemie (International ed. in English) (2021)
Cyclization of propargylamines with CO2 to obtain 2-oxazolidone heterocyclic compounds is an essential reaction in industry but it is usually catalyzed by noble-metal catalysts with organic bases as co-catalysts under harsh conditions. We have synthesized a unique CuI /CuII mixed valence copper-based framework {[(CuI 6 I5 )Cu3 II L6 (DMA)3 ](NO3 )⋅9DMA}n (1) with good solvent and thermal stability, as well as a high density of uncoordinated amino groups evenly distributed in the large nanoscopic channels. Catalytic experiments show that 1 can effectively catalyze the reaction of propargylamines with CO2 , and the yield can reach 99 %. The turnover frequency (TOF) reaches a record value of 230 h-1 , which is much higher than that of reported noble-metal catalysts. Importantly, this is the first report of heterogeneously catalyzed green conversion of propargylamines with CO2 without solvents and co-catalysts under low temperature and atmospheric pressure. A mechanistic study reveals that a triply synergistic catalytic effect between CuI /CuII and uncoordinated amino groups promotes highly efficient and green conversion of CO2 . Furthermore, 1 directly catalyzes this reaction with high efficiency when using simulated flue gas as a CO2 source.
Keyphrases