Login / Signup

Potentials of patchouli (Pogostemon cablin) essential oil on ruminal methanogenesis, feed degradability, and enzyme activities in vitro.

Hani M El-ZaiatAdibe L Abdalla
Published in: Environmental science and pollution research international (2019)
The effects of patchouli essential oil (PEO) as an alternative to antibiotics on ruminal methanogenesis, feed degradability, and enzyme activities were evaluated. The basal substrate was incubated without additives (control, CTL) and with monensin (MON, 6 μM/g DM) or patchouli essential oil (PEO, 90 μg/g DM) for 24 h. In three different runs, the gas production (GP) was recorded at 2, 4, 8, 12, and 24 h of incubation using a semi-automatic system. The results revealed that MON had decreased (P < 0.05) the net GP and CH4 production and digestible and metabolizable energy relative to PEO supplementation. The in vitro truly degraded organic matter was not influenced by PEO application, while was reduced (P = 0.027) with MON. Both PEO and MON had similar reducing effect on the activity of carboxymethylcellulase (P = 0.030), in vitro truly degraded neutral detergent fiber (P = 0.010), NH3-N concentrations (P = 0.012), acetate proportion (C2, P = 0.046), C2 to C3 ratio (P = 0.023), and total protozoal count (P = 0.017). Both additives recorded similar elevating potential on the α-amylase activity (P = 0.012), propionate (C3) proportion (P = 0.011), and microbial protein (P = 0.034) compared with CTL. Effects of MON and PEO on ruminal feed degradability, microbial enzyme activities, and total protozoa counts may be responsible for modifying rumen fermentation ecology. Addition of PEO may act as a desirable alternative rumen modifier for MON in ruminant diets.
Keyphrases
  • essential oil
  • room temperature
  • organic matter
  • microbial community
  • ionic liquid
  • anaerobic digestion
  • type diabetes
  • insulin resistance
  • risk assessment
  • skeletal muscle
  • climate change
  • carbon dioxide
  • neural network