Room Temperature Electron Spin Coherence in Photogenerated Molecular Spin Qubit Candidates.
Maximilian MayländerPhilipp ThielertTheresia QuintesAndreas Vargas JentzschSabine RichertPublished in: Journal of the American Chemical Society (2023)
One of the main challenges in the emerging field of molecular spintronics is the identification of new spin qubit materials for quantum information applications. In this regard, recent work has shown that photoexcited chromophore-radical systems are promising candidates to expand our repertoire of suitable candidate molecules. Here, we investigate a series of three chromophore-radical compounds composed of a perylene diimide (PDI) chromophore and a stable 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) radical by transient electron paramagnetic resonance (EPR) techniques. We explore the influence of isotope labeling of the TEMPO moiety on the EPR spectra and electron spin coherence times of the molecular quartet states generated upon photoexcitation and illustrate that (i) a coherent manipulation of the spin state is possible in these systems even at room temperature and that (ii) a spin coherence time of 0.7 μs can be achieved under these conditions. This demonstration of electron spin coherence at ambient temperatures paves the way for practical applications of such systems in functional molecular devices.