Microfluidic Colorimetric Biosensors Based on MnO2 Nanozymes and Convergence-Divergence Spiral Micromixers for Rapid and Sensitive Detection of Salmonella.
Li XueNana JinRuya GuoSiyuan WangWuzhen QiYuanjie LiuYanbin LiJianhan LinPublished in: ACS sensors (2021)
In-field screening of foodborne pathogens plays an important role in ensuring food safety. Thus, a microfluidic biosensor was developed for rapid and sensitive detection of Salmonella using manganese dioxide nanoflowers (MnO2 NFs) for amplifying the biological signal, a microfluidic chip with a convergence-divergence spiral micromixer for performing automatic operations, and a smartphone app with a saturation calculation algorithm for processing the image. First, immune magnetic nanoparticles (MNPs), the sample, and immune MnO2 NFs were fully mixed and sufficiently incubated in the spiral micromixer to form MNP-bacteria-MnO2 sandwich complexes, which were magnetically captured in a separation chamber in the microfluidic chip. Then, a 3,3',5,5'-tetramethylbenzidine (TMB) substrate was injected and catalyzed by a MnO2 NF nanomimetic enzyme on the complexes, resulting in the production of yellow catalysate. Finally, the catalysate was transferred into a detection chamber and its image was measured and processed using the smartphone app to determine the number of bacteria. This biosensor was able to detect Salmonella from 4.4 × 101 to 4.4 × 106 CFU/mL in 45 min with a detection limit of 44 CFU/mL, and has the potential to provide a promising platform for on-site detection of foodborne bacteria.
Keyphrases
- sensitive detection
- loop mediated isothermal amplification
- high throughput
- circulating tumor cells
- label free
- quantum dots
- deep learning
- single cell
- escherichia coli
- magnetic nanoparticles
- listeria monocytogenes
- machine learning
- signaling pathway
- oxidative stress
- gold nanoparticles
- lps induced
- immune response
- nuclear factor
- antimicrobial resistance
- gram negative
- room temperature
- nitric oxide
- mass spectrometry
- climate change
- ionic liquid
- neural network