Login / Signup

Exploratory Study of Superparamagnetic Iron Oxide Dose Optimization in Breast Cancer Sentinel Lymph Node Identification Using a Handheld Magnetic Probe and Iron Quantitation.

Kanae TarunoAkihiko KuwahataMasaki SekinoTakayuki NakagawaTomoko KuritaKatsutoshi EnokidoSeigo NakamuraHiroyuki TakeiMoriaki Kusakabe
Published in: Cancers (2022)
This exploratory study compared doses of ferucarbotran, a superparamagnetic iron oxide nanoparticle, in sentinel lymph nodes (SLNs) and quantified the SLN iron load by dose and localization. Eighteen females aged ≥20 years scheduled for an SLN biopsy with node-negative breast cancer were divided into two equal groups and administered either 1 mL or 0.5 mL ferucarbotran. Iron content was evaluated with a handheld magnetometer and quantification device. The average iron content was 42.8 µg (range, 1.3-95.0; 0.15% of the injected dose) and 21.9 µg (1.1-71.0; 0.16%) in the 1-mL and 0.5-mL groups, respectively ( p = 0.131). The iron content of the closest SLN compared to the second SLN was 53.0 vs. 10.0 µg (19% of the injected dose) and 34.8 vs. 4.1 µg (11.1%) for the 1-mL and 0.5-mL groups, respectively ( p = 0.001 for both). The magnetic field was high in both groups (average 7.30 µT and 6.00 µT in the 1-mL and 0.5-mL groups, respectively) but was not statistically significant ( p = 0.918). The magnetic field and iron content were correlated (overall SLNs, p = 0.02; 1-mL, p = 0.014; 0.5-mL, p = 0.010). A 0.5-mL dose was sufficient for SLN identification. Primary and secondary SLNs could be differentiated based on iron content. Handheld magnetometers could be used to assess the SLN iron content.
Keyphrases