Metal nanoparticle-decorated germanane for selective photocatalytic aerobic oxidation of benzyl alcohol.
Chuyi NiMadison ChevalierJonathan G-C VeinotPublished in: Nanoscale advances (2022)
Two dimensional materials such as germanane have attracted substantial research interest due to their unique chemical, optical, and electronic properties. A variety of methods for introducing diverse functionalities to their surfaces have been reported and these materials have been exploited as photocatalysts. Herein, we report the preparation of metal nanoparticle (Au, Ag, Cu, Pd, Pt) decorated germanane (M@GeNSs) via facile surface-mediated reduction and investigate their structure, composition, as well morphology using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). These functional materials were subsequently explored as photocatalysts for selective visible light-induced oxidation of benzyl alcohol to benzaldehyde as freestanding nanosystems and thin films and a reaction mechanism of the photocatalytic oxidation of benzyl alcohol is proposed.