Functional Properties of Brewer's Spent Grain Protein Isolate: The Missing Piece in the Plant Protein Portfolio.
Alice JaegerAylin W SahinLaura NyhanEmanuele ZanniniElke K ArendtPublished in: Foods (Basel, Switzerland) (2023)
Plant protein sources, as a part of developing sustainable food systems, are currently of interest globally. Brewer's spent grain (BSG) is the most plentiful by-product of the brewing industry, representing ~85% of the total side streams produced. Although nutritionally dense, there are very few methods of upcycling these materials. High in protein, BSG can serve as an ideal raw material for protein isolate production. This study details the nutritional and functional characteristics of BSG protein isolate, EverPro, and compares these with the technological performance of the current gold standard plant protein isolates, pea and soy. The compositional characteristics are determined, including amino acid analysis, protein solubility, and protein profile among others. Related physical properties are determined, including foaming characteristics, emulsifying properties, zeta potential, surface hydrophobicity, and rheological properties. Regarding nutrition, EverPro meets or exceeds the requirement of each essential amino acid per g protein, with the exception of lysine, while pea and soy are deficient in methionine and cysteine. EverPro has a similar protein content to the pea and soy isolates, but far exceeds them in terms of protein solubility, with a protein solubility of ~100% compared to 22% and 52% for pea and soy isolates, respectively. This increased solubility, in turn, affects other functional properties; EverPro displays the highest foaming capacity and exhibits low sedimentation activity, while also possessing minimal gelation properties and low emulsion stabilising activity when compared to pea and soy isolates. This study outlines the functional and nutritional properties of EverPro, a brewer's spent grain protein, in comparison to commercial plant protein isolates, indicating the potential for the inclusion of new, sustainable plant-based protein sources in human nutrition, in particular dairy alternative applications.