Login / Signup

Thermally Activated Delayed Fluorescent Materials Combining Intra- and Intermolecular Charge Transfers.

Dong-Dong ZhangKatsuaki SuzukiXiao-Zeng SongYoshimasa WadaShosei KuboDongdong ZhangHironori Kaji
Published in: ACS applied materials & interfaces (2019)
A novel thermally activated delayed fluorescent (TADF) compound, 9-(3-((4,6-diphenyl-1,3,5-triazin-2-yl)oxy)phenyl)-3,6-diphenyl-9 H-carbazole (PhCz- o-Trz), with a donor-σ-acceptor (D-σ-A) motif is developed. A flexible small space σ-junction is adopted to partly suppress the intramolecular charge transfer (intra-CT) while inversely enhancing the intermolecular charge transfer (inter-CT) between D/A moieties, realizing the coexistence of both intra-CT and inter-CT in an amorphous aggregate. The coexistence of dual CTs increases the complexity of the singlet and triplet state mixing, enhancing the triplet-to-singlet spin-flip transition and thereby the TADF emission. Additionally, PhCz- o-Trz is evaluated not only as an emitter but also as a sensitizing host for fluorescent and phosphorescent dopants, all exhibiting high efficiencies with alleviated efficiency roll-offs. These results shed light on the development of new TADF materials with dual CTs and may further deepen our understanding about TADF mechanisms.
Keyphrases