Login / Signup

Self-Assembly of DNA Tiles with G-Quadruplex DNAzyme Catalytic Activity for Sensing Applications.

Lin WangJingyu CuiJulian Alexander TannerSimon Chi-Chin Shiu
Published in: ACS applied bio materials (2022)
DNA tiles form through self-assembly of a small number of DNA strands that interact through basic repeated interactions, allowing the growth of nanoscale structures seeded by molecular inputs. If an approach for catalytic signal amplification can be integrated into the resultant nanostructure, then one can anticipate biosensing or diagnostic applications mediated by DNA tile self-assembly. Here, two-dimensional DNA tiles with split quadruplexes were designed as diagnostic tools for nucleic acid sensing without the use of protein enzymes. The presence of a target sequence leads to formation of extended microscale structures with arrayed multiple G-quadruplexes across the tile plane, with catalytic activity coupled to a colorimetric reporter. Such a mechanism has potential for low-cost signal amplification using unmodified DNA without the use of protein enzymes for biosensing.
Keyphrases
  • nucleic acid
  • circulating tumor
  • single molecule
  • cell free
  • low cost
  • high resolution
  • crispr cas
  • gold nanoparticles
  • living cells
  • amino acid
  • hydrogen peroxide
  • mass spectrometry
  • binding protein
  • sensitive detection