High-Performance Doping-Free Hybrid White OLEDs Based on Blue Aggregation-Induced Emission Luminogens.
Baiquan LiuHan NieGengwei LinShiben HuDongyu GaoJianhua ZouMiao XuLei WangZhujin ZhaoHonglong NingJunbiao PengYong CaoBen-Zhong TangPublished in: ACS applied materials & interfaces (2017)
Doping-free white organic light-emitting diodes (DF-WOLEDs) have aroused research interest because of their simple properties. However, to achieve doping-free hybrid WOLEDs (DFH-WOLEDs), avoiding aggregation-caused quenching is challenging. Herein, blue luminogens with aggregation-induced emission (AIE) characteristics, for the first time, have been demonstrated to develop DFH-WOLEDs. Unlike previous DFH-WOLEDs, both thin (<1 nm) and thick (>10 nm) AIE luminogen (AIEgen) can be used for devices, enhancing the flexibility. Two-color devices show (i) pure-white emission, (ii) high CRI (85), and (iii) high efficiency. Particularly, 19.0 lm W1- is the highest for pure-white DF-WOLEDs, while 35.0 lm W1- is the best for two-color hybrid WOLEDs with CRI ≥ 80. A three-color DFH-WOLED shows broad color-correlated temperature span (2301-11628 K), (i) the first sunlight-like OLED (2500-8000 K) operating at low voltages, (ii) the broadest span among sunlight-like OLED, and (iii) possesses comparable efficiency with the best doping counterpart. Another three-color DFH-WOLED exhibits CRI > 90 at ≥3000 cd m-2, (i) the first DF-WOLED with CRI ≥ 90 at high luminances, and (ii) the CRI (92.8) is not only the highest among AIE-based WOLEDs but also the highest among DF-WOLEDs. Such findings may unlock an alternative concept to develop DFH-WOLEDs.