Login / Signup

Thermal and Mechanical Properties of Reprocessed Polylactide/Titanium Dioxide Nanocomposites for Material Extrusion Additive Manufacturing.

Saltanat BergaliyevaDavid L SalesJosé María Jiménez CabelloPedro Burgos PintosNatalia Fernández DelgadoPatricia Marzo GagoAnn ZammitSergio I Molina
Published in: Polymers (2023)
Polylactic acid (PLA) is a biodegradable polymer that can replace petroleum-based polymers and is widely used in material extrusion additive manufacturing (AM). The reprocessing of PLA leads to a downcycling of its properties, so strategies are being sought to counteract this effect, such as blending with virgin material or creating nanocomposites. Thus, two sets of nanocomposites based respectively on virgin PLA and a blend of PLA and reprocessed PLA (rPLA) with the addition of 0, 3, and 7 wt% of titanium dioxide nanoparticles (TiO 2 ) were created via a double screw extruder system. All blends were used for material extrusion for 3D printing directly from pellets without difficulty. Scanning electron micrographs of fractured samples' surfaces indicate that the nanoparticles gathered in agglomerations in some blends, which were well dispersed in the polymer matrix. The thermal stability and degree of crystallinity for every set of nanocomposites have a rising tendency with increasing nanoparticle concentration. The glass transition and melting temperatures of PLA/TiO 2 and PLA/rPLA/TiO 2 do not differ much. Tensile testing showed that although reprocessed material implies a detriment to the mechanical properties, in the specimens with 7% nano-TiO 2 , this effect is counteracted, reaching values like those of virgin PLA.
Keyphrases
  • visible light
  • quantum dots
  • reduced graphene oxide
  • high resolution
  • carbon nanotubes
  • mass spectrometry
  • gold nanoparticles
  • staphylococcus aureus
  • biofilm formation
  • walled carbon nanotubes