Login / Signup

Dynamics of Hydrogen Bonds between Water and Intrinsically Disordered and Structured Regions of Proteins.

Korey M ReidHumanath PoudelDavid M Leitner
Published in: The journal of physical chemistry. B (2023)
Recent studies indicate more restricted dynamics of water around intrinsically disordered proteins (IDPs) than structured proteins. We examine here the dynamics of hydrogen bonds between water molecules and two proteins, small ubiquitin-related modifier-1 (SUMO-1) and ubiquitin-conjugating enzyme E2I (UBC9), which we compare around intrinsically disordered regions (IDRs) and structured regions of these proteins. It has been recognized since some time that excluded volume effects, which influence access of water molecules to hydrogen-bonding sites, and the strength of hydrogen bonds between water and protein affect hydrogen bond lifetimes. While we find those two properties to mediate lifetimes of hydrogen bonds between water and protein residues in this study, we also find that the lifetimes are affected by the concentration of charged groups on other nearby residues. These factors are more important in determining the hydrogen bond lifetimes than whether a residue hydrogen bonding with water belongs to an IDR or to a structured region.
Keyphrases
  • small molecule
  • protein protein
  • drug induced