Login / Signup

Promoting the Use of Common Oat Genetic Resources through Diversity Analysis and Core Collection Construction.

Maja BoczkowskaBogusław ŁapińskiIzabela KordulasińskaDenise F DostatnyJerzy H Czembor
Published in: PloS one (2016)
The assessment of diversity and population structure and construction of a core collection is beneficial for the efficient use and management of germplasm. A unique collection of common oat landraces, cultivated in the temperate climate of central Europe until the end of the twentieth century, is preserved in the Polish gene bank. It consists of 91 accessions that have never been used in breeding programs. In order to optimise the use of this genetic resource, we aimed to: (1) determine genetic and agro-morphological diversity, (2) identify internal genetic variation of the tested accessions, (3) form a core collection and (4) recognise the accessions useful for breeding programs or re-release for cultivation. The collection was screened using ISSR markers (1520 loci) and eight agro-morphological traits. Uniquely, we performed molecular studies based on 24 individuals of every accession instead of bulk samples. Therefore, assessment of the degree of diversity within each population and the identification of overlapping gene pools were possible. The observed internal diversity (Nei unbiased coefficient) was in the range of 0.17-0.31. Based on combined genetic and agro-morphological data, we established the core collection composed of 21 landraces. Due to valuable compositions of important traits, some accessions were also identified as useful for breeding programs. The population structure and principal coordinate analysis revealed two major clusters. Based on the previous results, the accessions classified within the smaller one were identified as obsolete varieties instead of landraces. Our results show that the oat landraces are, in general, resistant to local races of diseases, well adapted to local conditions and, in some cases, yielding at the level of modern varieties. Therefore, in situ conservation of the landraces in the near future may be satisfactory for both farmers and researchers in terms of the genetic resources preservation.
Keyphrases
  • genome wide
  • copy number
  • dna methylation
  • public health
  • computed tomography
  • magnetic resonance
  • big data
  • deep learning
  • contrast enhanced