Login / Signup

Decreased β-Cell Proliferation and Vascular Density in a Subpopulation of Low-Oxygenated Male Rat Islets.

Sara UllstenJoey LauPer-Ola Carlsson
Published in: Journal of the Endocrine Society (2019)
Low-oxygenated and dormant islets with a capacity to become activated when needed may play a crucial role in the complex machinery behind glucose homeostasis. We hypothesized that low-oxygenated islets, when not functionally challenged, do not rapidly cycle between activation and inactivation but are a stable population that remain low-oxygenated. As this was confirmed, we aimed to characterize these islets with regard to cell composition, vascular density, and endocrine cell proliferation. The 2-nitroimidazole low-oxygenation marker pimonidazole was administered as a single or repeated dose to Wistar Furth rats. The stability of oxygen status of islets was evaluated by immunohistochemistry as the number of islets with incorporated pimonidazole adducts after one or repeated pimonidazole injections. Adjacent sections were evaluated for islet cell composition, vascular density, and endocrine cell proliferation. Single and repeated pimonidazole injections over an 8-hour period yielded accumulation of pimonidazole adducts in the same islets. An average of 30% of all islets was in all cases positively stained for pimonidazole adducts. These islets showed a similar endocrine cell composition as other islets but had lower vascular density and β-cell proliferation. In conclusion, low-oxygenated islets were found to be a stable subpopulation of islets for at least 8 hours. Although they have previously been observed to be less functionally active, their islet cell composition was similar to that of other islets. Consistent with their lower oxygenation, they had fewer blood vessels than other islets. Notably, β-cell regeneration preferentially occurred in better-oxygenated islets.
Keyphrases
  • cell proliferation
  • single cell
  • stem cells
  • blood pressure
  • type diabetes
  • cell cycle
  • bone marrow
  • pi k akt
  • signaling pathway
  • metabolic syndrome
  • oxidative stress