Login / Signup

Controllable Synthesis of 2H-1T' Mo x Re (1- x ) S 2 Lateral Heterostructures and Their Tunable Optoelectronic Properties.

Xiaona SunYang LiuJianwei ShiChen SiJiantao DuXinfeng LiuChengbao JiangShengxue Yang
Published in: Advanced materials (Deerfield Beach, Fla.) (2023)
Constructing heterostructures and doping are valid ways to improve the optoelectronic properties of transition metal dichalcogenides (TMDs) and optimize the performance of TMDs-based photodetectors. Compared with transfer techniques, chemical vapor deposition (CVD) has higher efficiency in preparing heterostructures. As for the one-step CVD growth of heterostructures, cross-contamination between the two materials may occur during the growth process, which may provide the possibility of one-step simultaneous realization of controllable doping and formation of alloy-based heterostructures by finely tuning the growth dynamics. Here, 2H-1T' Mo x Re (1- x ) S 2 alloy-to-alloy lateral heterostructures are synthesized through this one-step CVD growth method, utilizing the cross-contamination and different growth temperatures of the two alloys. Due to the doping of a small amount of Re atoms in 2H MoS 2 , 2H Mo x Re (1- x ) S 2 has a high response rejection ratio in the solar-blind ultraviolet (SBUV) region and exhibits a positive photoconductive (PPC) effect. While the 1T' Mo x Re (1- x ) S 2 formed by heavily doping Mo atoms into 1T' ReS 2 will produce a negative photoconductivity (NPC) effect under ultraviolet (UV) laser irradiation. The optoelectronic property of 2H-1T' Mo x Re (1- x ) S 2 -based heterostructures can be modulated by gate voltage. These findings are expected to expand the functionality of traditional optoelectronic devices and have potential applications in optoelectronic logic devices. This article is protected by copyright. All rights reserved.
Keyphrases