Calcium influx mediates the chemoattractant-induced translocation of the arrestin-related protein AdcC in Dictyostelium.
Lauriane MasAdeline CierenChristian DelphinAgnès JournetLaurence AubryPublished in: Journal of cell science (2018)
Arrestins are key adaptor proteins that control the fate of cell-surface membrane proteins and modulate downstream signaling cascades. The Dictyostelium discoideum genome encodes six arrestin-related proteins, harboring additional modules besides the arrestin domain. Here, we studied AdcB and AdcC, two homologs that contain C2 and SAM domains. We showed that AdcC - in contrast to AdcB - responds to various stimuli (such as the chemoattractants cAMP and folate) known to induce an increase in cytosolic calcium by transiently translocating to the plasma membrane, and that calcium is a direct regulator of AdcC localization. This response requires the calcium-dependent membrane-targeting C2 domain and the double SAM domain involved in AdcC oligomerization, revealing a mode of membrane targeting and regulation unique among members of the arrestin clan. AdcB shares several biochemical properties with AdcC, including in vitro binding to anionic lipids in a calcium-dependent manner and auto-assembly as large homo-oligomers. AdcB can interact with AdcC; however, its intracellular localization is insensitive to calcium. Therefore, despite their high degree of homology and common characteristics, AdcB and AdcC are likely to fulfill distinct functions in amoebae.