Login / Signup

Changes in Electron Structure of the Triple Bond in Substituted Acetylene and Diacetylene Derivatives.

Mirosław JabłońskiTadeusz Marek Krygowski
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2020)
The substituent effect is usually considered by means of various Hammett-like substituent constants and is most often related to aromatic systems. Unlike this, we present results of our research on the influence of 27 substituents spanning a wide range of electronic properties, from strongly electron-withdrawing to strongly electron-donating, on the electron structure of X-substituted acetylenes and diacetylenes - thus the systems which until now have practically not been subject of any deeper studies. It is shown that the interaction through triple bond(s) is associated with a significant advantage of resonance effects and that the substituent effect transmitted by the C≡C-C≡C unit is about half of that transmitted by the C≡C unit alone. Substituent X mainly affects the closest carbon atom by means of proximity effect, hence changes of charge on this atom do not follow any substituent constants. The effect on further carbon atoms is much smaller. The presence of the C≡C-C≡C unit withdraws more charge from X than a triple bond alone, and hinders communication between X and the terminal H atom. Comparison of substituent effects to those present in X-substituted benzene derivatives shows that the electronic properties of the terminal hydrogen atom in acetylenes and diacetylenes are most similar to the electronic properties of ortho and para hydrogen atoms in X-substituted benzene derivatives.
Keyphrases
  • electron transfer
  • molecular docking
  • solar cells
  • visible light