Ab initio inspired design of ternary boride thin films.
Vincent MoraesHelmut RiedlChristoph FugerPeter PolcikHamid BolvardiDavid HolecP H MayrhoferPublished in: Scientific reports (2018)
The demand to discover new materials is scientifically as well as industrially a continuously present topic, covering all different fields of application. The recent scientific work on thin film materials has shown, that especially for nitride-based protective coatings, computationally-driven understanding and modelling serves as a reliable trend-giver and can be used for target-oriented experiments. In this study, semi-automated density functional theory (DFT) calculations were used, to sweep across transition metal diborides in order to characterize their structure, phase stability and mechanical properties. We show that early transition metal diborides (TiB2, VB2, etc.) tend to be chemically more stable in the AlB2 structure type, whereas late transition metal diborides (WB2, ReB2, etc.) are preferably stabilized in the W2B5-x structure type. Closely related, we could prove that point defects such as vacancies significantly influence the phase stability and even can reverse the preference for the AlB2 or W2B5-x structure. Furthermore, investigations on the brittle-ductile behavior of the various diborides reveal, that the metastable structures are more ductile than their stable counterparts (WB2, TcB2, etc.). To design thin film materials, e.g. ternary or layered systems, this study is important for application oriented coating development to focus experimental studies on the most perspective systems.