Login / Signup

Quantifying the Separation of Positive and Negative Areas in Electrostatic Potential for Predicting Feasibility of Ammonium Sulfate for Protein Crystallization.

Yan GuoNoritaka NishidaTyuji Hoshino
Published in: Journal of chemical information and modeling (2021)
Ammonium sulfate (AS) and poly(ethylene glycol) (PEG) are the most popular precipitants in protein crystallization. Some proteins are preferably crystallized by AS, while some are by PEG. The electrostatic potential is related to the preference of the precipitant agents. The iso-surfaces of the electrostatic potentials for the AS-crystallized proteins display a common shape and a distinct separation between the positive and negative areas. In contrast, the PEG-crystallized proteins show unclear positive and negative separation. In this work, we propose schemes to quantitatively evaluate the separation for predicting which precipitant is favorable for crystal growth between AS or PEG. Three methods were attempted to quantify the amplitude of the separation, separation distance, dipole moment, and shape regularity. The positive and negative areas are approximated to the spherical potentials caused by point charges. The first method is a measurement of the distance between the positive and negative point charges. The second one is an assessment including the quantity of electric charge into the distance. The last one is an approach monitoring the clarity of the positive and negative separation. The average value for 25 kinds of AS-preferring proteins was higher than that for the PEG-preferring ones in all three methods. Therefore, every method can distinguish the proteins preferring AS for crystal growth from those preferring PEG. These methods require an iso-surface of the electrostatic potential depicted at a certain contouring value. The shape of the iso-surface depends on the contouring value. The dependency on contour was examined by depicting the iso-surfaces of electrostatic potential with three values at ±0.8, ±0.5, and ±0.2 kT/e. While reducing the contouring value leads to the increase in separation distance and the decrease in shape regularity, dipole moment is independent of the alteration of contouring value. While the AS-preferring proteins are distinguishable from the PEG-preferring ones in any contouring values, the iso-surface at ±0.5 kT/e seems adequate for regular use. The dipole moment assessment is feasible for the choice of potent precipitants for crystal growth in experiments.
Keyphrases