Short-term in situ Exposure of Guinean Tilapia and Blue Crab Near a Sawmill Wastes-impacted Coastal Ecosystem Reveal Significant Oxidative Stress Effects.

Opeyemi A OgunkoyaTemitope Olawunmi SogbanmuThomas-B Seiler
Published in: Bulletin of environmental contamination and toxicology (2024)
Coastal ecosystems are characterized by various human activities with potential adverse impacts. This study aimed to evaluate the potential oxidative stress effects in representative aquatic biota deployed in situ at a sawmill wastes dump (test site) and reference site in a coastal ecosystem for a short term (28 days) period. PAHs and OCPs were analysed using GC-FID and GC-MS respectively in surface water and sediments. Oxidative stress indices (malondialdehyde, glutathione-s-transferase, reduced glutathione, catalase and superoxide dismutase) were evaluated following standard methods in Coptodon guineensis (Guinean Tilapia) and Callinectes amnicola (Blue crab) over a period of 28 days. Sum PAHs in the test site sediments, oxidative stress indices in C. guineensis liver and C. amnicola haemolymph after 28 days exposure were significantly higher (p < 0.0.5) compared to the reference site. The results showed the adverse impacts to biota of sawmill wastes which are continuously burnt at the test site with potential for long-term effects. Sustainable sawmill wastes management at the test site are recommended to sustain life below water (UNSDG 14).