Login / Signup

Theoretical insight on the origin of anelasticity in zinc oxide nanowires.

Sherif Abdulkader TawfikDale A OsborneMichelle Jeanette Sapountzis Spencer
Published in: Nanoscale (2019)
Anelasticity of nanowires has recently attracted attention as an interesting property for high efficiency mechanical damping materials. While the mechanism of anelasticity has so far been analysed using continuum mechanical models based on defect diffusion, the mechanisms behind anelasticity have not yet been determined on an atomic level. Such information is needed in order to be able to design and synthesise new nanomaterials having desired mechanical properties. Here we determine the potential mechanism of anelasticity in narrow zinc oxide nanowires by analyzing the bond stretching and compression within the nanowire structure based on density functional theory. Our approach shows that different local minimum structures are created when different strain patterns are applied which give rise to the anelastic behavior. These findings can be applied for the prediction of potential anelasticity of other nanowire materials.
Keyphrases
  • room temperature
  • density functional theory
  • high efficiency
  • reduced graphene oxide
  • oxide nanoparticles
  • ionic liquid
  • molecular dynamics
  • working memory
  • human health
  • gold nanoparticles
  • risk assessment
  • healthcare