A 'click' based fluorescent probe mimicking the IMPLICATION logic gate for Cu(II) and Pb(II) sensing: DFT and molecular docking studies.
Gurleen SinghGurjaspreet Singh SushmaGagandeep KaurGurpreet KaurHarminder SinghJandeep SinghPublished in: Analytical methods : advancing methods and applications (2024)
'Click' derived 1,2,3-triazole appended scaffolds are intriguing candidates for selective metal ion recognition because of their stereospecificity and efficiency. The presented report uses the 'click' approach to introduce a glyoxal bis-(2-hydroxyanil)-based chemosensor probe (GT) via the CuAAC pathway, which can selectively detect Cu(II) and Pb(II) ions, both of which are among the most hazardous and perturbing environmental pollutants. NMR spectroscopy, IR spectroscopy, and mass spectrometry (LCMS) were used to successfully characterize the synthesized probe. The discerning recognition behaviour of the probe for Cu(II) and Pb(II) ions was established through a chemosensing investigation using fluorescence and UV-vis spectroscopy, wherein the fluorescence spectral analysis demonstrated the probe to mimic the IMPLICATION logic gate. Furthermore, the metal-ligand interaction was also validated by 1 H NMR and IR spectroscopy of the synthesized GT-metal complex, and UV-vis spectroscopy was also employed to analyze the effect of time and temperature on the capacity of the probe to bind with Cu(II) and Pb(II) ions. Furthermore, the sensor's atherosclerosis-inhibition potential was investigated in silico utilizing docking analysis with tribbles-1 protein, and a density functional theory (DFT) study enhanced the understanding of its structure using the B3LYP functional and the 6311G++(d,p) basis set.
Keyphrases