Single-frequency ion parking, a useful technique in electrospray mass spectrometry (ESI-MS), involves gas-phase charge-reduction ion/ion reactions in an electrodynamic ion trap in conjunction with the application of a supplementary oscillatory voltage to selectively inhibit the reaction rate of an ion of interest. The ion parking process provides a means for limiting the extent of charge reduction in a controlled fashion and allows for ions distributed over a range of charge states to be concentrated into fewer charge states (a single charge state under optimal conditions). As charge reduction inherently leads to an increase in the mass-to-charge ( m/z ) ratio of the ions, it is important that the means for storing and analyzing ions be able to accommodate ions of high m/z ratios. The so-called 'digital ion trap' (DIT), which uses a digital waveform as the trapping RF, has been demonstrated to be well-suited for the analysis of high m/z ions by taking advantage of its ability to manipulate the waveform frequency. In this study, the feasibility of ion parking in a 3D quadrupole ion trap operated as a DIT using a slow-amplitude single-frequency sine-wave for selective inhibition of an ion/ion reaction is demonstrated. A recently described model that describes ion parking has been adjusted for the DIT case and is used to interpret experimental data for proteins ranging in mass from 8600 Da to 467,000 Da.