Login / Signup

Hierarchical Cobalt-Doped Molybdenum-Nickel Nitride Nanowires as Multifunctional Electrocatalysts.

Zhuoxun YinYue SunYongjie JiangFeng YanChunling ZhuYujin Chen
Published in: ACS applied materials & interfaces (2019)
Herein, we demonstrate hierarchically porous Co-doped MoNi nitride nanowires for multifunctional electrocatalysts. After the Co incorporation for water electrolysis and zinc-air systems, the active surface area is enhanced, whereas the charge-transfer and mass-transfer resistances are reduced significantly. Due to the dual modulation in the electric conductivity and active surface area induced by the Co-doping, the hierarchically porous trimetal nitrides show high activity and good stability for the hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction. The two-electrode electrolyzer assembled by the bifunctional electrocatalysts can deliver 10 mA cm-2 at a voltage of merely 1.57 V, compared to the best reported electrocatalysts. Meanwhile, two all-solid-state zinc-air batteries in series can power more than 50 red light-emitting diodes and the two-electrode electrolyzer catalyzed by the multifunctional electrocatalysts with excellent operation stability.
Keyphrases