Login / Signup

Bulk hydrogen stable isotope composition of seaweeds: Clear separation between Ulvophyceae and other classes.

Matheus C CarvalhoPedro Bastos de Macedo CarneiroFernando Gaspar DellatorrePablo Ezequiel GibiliscoJulian SachsBradley D Eyre
Published in: Journal of phycology (2017)
Little is known about the bulk hydrogen stable isotope composition (δ2 H) of seaweeds. This study investigated the bulk δ2 H in several different seaweed species collected from three different beaches in Brazil, Australia, and Argentina. Here, we show that Ulvophyceae (a group of green algae) had lower δ2 H values (between -94‰ and -130‰) than red algae (Florideophyceae), brown algae (Phaeophyceae), and species from the class Bryopsidophyceae (another group of green algae). Overall the latter three groups of seaweeds had δ2 H values between -50‰ and -90‰. These findings were similar at the three different geographic locations. Observed differences in δ2 H values were probably related to differences in hydrogen (H) metabolism among algal groups, also observed in the δ2 H values of their lipids. The marked difference between the δ2 H values of Ulvophyecae and those of the other groups could be useful to trace the food source of food webs in coastal rocky shores, to assess the impacts of green tides on coastal ecosystems, and to help clarify aspects of their phylogeny. However, reference materials for seaweed δ2 H are required before the full potential of using the δ2 H of seaweeds for ecological studies can be exploited.
Keyphrases
  • human health
  • climate change
  • heavy metals
  • risk assessment
  • high resolution
  • visible light
  • water quality