Login / Signup

Realization of a multinode quantum network of remote solid-state qubits.

M PompiliS L N HermansS BaierHans C BeukersP C HumphreysR N SchoutenR F L VermeulenM J TiggelmanL Dos Santos MartinsB DirkseStephanie WehnerRonald Hanson
Published in: Science (New York, N.Y.) (2021)
The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented with a robust memory qubit and local quantum logic. In addition, we achieve real-time communication and feed-forward gate operations across the network. We demonstrate two quantum network protocols without postselection: the distribution of genuine multipartite entangled states across the three nodes and entanglement swapping through an intermediary node. Our work establishes a key platform for exploring, testing, and developing multinode quantum network protocols and a quantum network control stack.
Keyphrases
  • molecular dynamics
  • energy transfer
  • monte carlo
  • lymph node
  • sentinel lymph node
  • radiation therapy
  • working memory
  • network analysis
  • social media