Login / Signup

Correlation between Chiral Modifier Adsorption and Enantioselectivity in Hydrogenation Catalysis.

Yufei NiAlexander D GordonFlorisa TanicalaFrancisco Zaera
Published in: Angewandte Chemie (International ed. in English) (2017)
Infrared absorption spectroscopy performed in situ at the solid-liquid interface revealed that the adsorption on platinum supported catalysts of 1-(1-naphthyl)-ethylamine, which is used as a chiral modifier in hydrogenation catalysis, occurs through the amine group, not the aromatic ring as is widely believed. Comparisons were performed against a set of related modifier compounds with targeted substitutions to help identify the key moiety involved in the adsorption. It was determined that neither naphthalene-based modifiers without amine groups nor those with tertiary amine moieties are capable of adsorbing on the metal surface to any significant extent. A direct correlation was also found between the ability of the amines to adsorb on the platinum surface and their performance as chiral modifiers that impart enantioselectivity to the hydrogenation of α-keto esters such as ethyl pyruvate.
Keyphrases
  • ionic liquid
  • aqueous solution
  • capillary electrophoresis
  • high resolution
  • single cell
  • mass spectrometry
  • highly efficient
  • single molecule
  • amino acid
  • visible light