Effects of Dielectric Barrier on Water Activation and Phosphorus Compound Digestion in Gas-Liquid Discharges.
Ye Rin LeeDo Yeob KimJae-Young KimDa Hye LeeGyu Tae BaeHyojun JangJoo Young ParkSunghoon JungEun-Young JungChoon-Sang ParkHyung-Kun LeeHeung-Sik TaePublished in: Nanomaterials (Basel, Switzerland) (2023)
To generate a stable and effective air-liquid discharge in an open atmosphere, we investigated the effect of the dielectric barrier on the discharge between the pin electrode and liquid surface in an atmospheric-pressure plasma reactor. The atmospheric-pressure plasma reactor used in this study was based on a pin-plate discharge structure, and a metal wire was used as a pin-type power electrode. A plate-type ground electrode was placed above and below the vessel to compare the pin-liquid discharge and pin-liquid barrier discharge (PLBD). The results indicated that the PLBD configuration utilizing the bottom of the vessel as a dielectric barrier outperformed the pin-liquid setup in terms of the discharge stability and that the concentration of reactive species was different in the two plasma modes. PLBD can be used as a digestion technique for determining the phosphorus concentration in natural water sources. The method for decomposing phosphorus compounds by employing PLBD exhibited excellent decomposition performance, similar to the performance of thermochemical digestion-an established conventional method for phosphorus detection in water. The PLBD structure can replace the conventional chemical-agent-based digestion method for determining the total dissolved phosphorus concentration using the ascorbic acid reduction method.