Login / Signup

Sequence Dependent Repair of 1,N6-Ethenoadenine by DNA Repair Enzymes ALKBH2, ALKBH3, and AlkB.

Rui QiKe BianFangyi ChenQi TangXianhao ZhouDeyu Li
Published in: Molecules (Basel, Switzerland) (2021)
Mutation patterns of DNA adducts, such as mutational spectra and signatures, are useful tools for diagnostic and prognostic purposes. Mutational spectra of carcinogens derive from three sources: adduct formation, replication bypass, and repair. Here, we consider the repair aspect of 1,N6-ethenoadenine (εA) by the 2-oxoglutarate/Fe(II)-dependent AlkB family enzymes. Specifically, we investigated εA repair across 16 possible sequence contexts (5'/3' flanking base to εA varied as G/A/T/C). The results revealed that repair efficiency is altered according to sequence, enzyme, and strand context (ss- versus ds-DNA). The methods can be used to study other aspects of mutational spectra or other pathways of repair.
Keyphrases
  • dna repair
  • density functional theory
  • cell free
  • single molecule
  • drinking water
  • single cell
  • dna damage response
  • nucleic acid