Engineering Nanozymes Using DNA for Catalytic Regulation.
Caixia ZengNa LuYanli WenGang LiuRui ZhangJiaxing ZhangFei WangXiaoguo LiuQian LiZisheng TangMin ZhangPublished in: ACS applied materials & interfaces (2019)
DNA treatment of metal nanoparticles provides a potent tool for tuning their native properties and constructing advanced materials. However, there have been limited studies on interactions between DNA and nanomaterial-based artificial enzymes (nanozymes) to influence their intrinsic peroxidase-like properties. Here, we present the utilization of DNA as a capping ligand to engineer various bio-nanointerfaces for high-precise and adjustable regulation of catalytic behaviors of nanozymes toward the oxidation of substrates. The treatment of stiff double-stranded DNA only induced a negligible enhancement of the catalytic activity of nanozymes, and both coil-like single-stranded DNA and hairpin DNA-capped nanoparticles produced a medium signal increase. Interestingly, hybridization chain reaction (HCR) product-treated nanoparticles showed the highest peroxidase-like activities among four DNA structures. Furthermore, significant parameters that influence HCR process and the modulation of catalysis, such as the concentration of the hairpin DNA, the ionic strength, and the amount of nanozyme, were also systematically investigated. On the basis of HCR amplification and iron oxide (Fe3O4) nanoparticles, we develop a simple, fast, label-free, and sensitive colorimetric strategy for sensing of a Yersinia pestis-relevant DNA sequence with a detection limit as low as 100 pM as well as single nucleotide polymorphism discrimination. These results highlight DNA engineering as a facile strategy to regulate the catalytic activities of nanozymes and understand the interactions between metallic nanoparticles and nucleic acids for biosensing applications.