Preparation and characterization of MCM-48/nickel oxide composite as an efficient and reusable catalyst for the assessment of photocatalytic activity.
Mohamed ShabanAhmed HamdRagab R AminMostafa R AbukhadraAhmed Abdel KhalekAftab Aslam Parwaz KhanAbdullah M AsiriPublished in: Environmental science and pollution research international (2020)
Mesoporous silica (MCM-48) was synthesized and used as a catalyst for supporting the nickel oxide photocatalyst. The loading of nickel oxide on MCM-48 results in a considerable reduction in the bandgap energy to 2.4 eV. MCM-48 was used as a catalyst and back-supporter for the nickel oxide to enhance its photocatalytic properties along with adsorption capacity. Therefore, the adsorption capacity of MCM-48/Ni2O3 was enhanced by 17.5% and 32.2% compared to Ni2O3 and MCM-48, respectively. Furthermore, the percentage of photocatalytic degradation was improved by approximately 68.2% relative to the free-standing Ni2O3. The MCM-48/Ni2O3 proved the chemisorption adsorption mechanism that happens in multilayer form through the heterogeneous surface. This through fixing such Ni2O3 particles over the nanoporous topography to provide more exposed hot adsorption and photocatalytic sites for the incident light photons. Therefore, supporting Ni2O3 catalytic particles onto MCM-48 produces a new category of photocatalytic systems with promising active centers for the efficient degradation of Congo red dye molecules.