Login / Signup

Prediction of Computer Vision Syndrome in Health Personnel by Means of Genetic Algorithms and Binary Regression Trees.

Eva María Artime RíosFernando Sánchez-LasherasAna Suarez SánchezFrancisco J Iglesias-RodríguezMaría Del Mar Seguí Crespo
Published in: Sensors (Basel, Switzerland) (2019)
One of the major consequences of the digital revolution has been the increase in the use of electronic devices in health services. Despite their remarkable advantages, though, the use of computers and other visual display terminals for a prolonged time may have negative effects on vision, leading to a greater risk of Computer Vision Syndrome (CVS) among their users. In this study, the importance of ocular and visual symptoms related to CVS was evaluated, and the factors associated with CVS were studied, with the help of an algorithm based on regression trees and genetic algorithms. The performance of this proposed model was also tested to check its ability to predict how prone a worker is to suffering from CVS. The findings of the present research confirm a high prevalence of CVS in healthcare workers, and associate CVS with a longer duration of occupation and higher daily computer usage.
Keyphrases
  • deep learning
  • machine learning
  • healthcare
  • public health
  • genome wide
  • mental health
  • case report
  • gene expression
  • dna methylation
  • ionic liquid
  • social media
  • climate change