Login / Signup

Controlling the Polymorphism of Indomethacin with Poloxamer 407 in a Gas Antisolvent Crystallization Process.

Fidel Méndez CañellasVivek VermaJacek KujawskiRobert GeertmanLidia TajberLuis Padrela
Published in: ACS omega (2022)
The polymorphic control of active pharmaceutical ingredients (APIs) is a major challenge in the manufacture of medicines. Crystallization methods that use supercritical carbon dioxide as an antisolvent can create unique solid forms of APIs, with a particular tendency to generate metastable polymorphic forms. In this work, the effects of processing conditions within a gas antisolvent (GAS) crystallization method, such as pressure, stirring rate, and temperature, as well as the type of solvent used and the presence of an additive, on the polymorphism of indomethacin were studied. Consistent formation of the X-ray powder diffraction-pure α polymorphic form of indomethacin by GAS was only achieved when a polymer, poloxamer 407, was used as an additive. Using the GAS method in combination with poloxamer 407 as a molecular additive enabled full control over the polymorphic form of indomethacin, regardless of the processing conditions employed, such as pressure, temperature, stirring rate, and type of solvent. A detailed molecular modeling study provided insight into the role of poloxamer 407 in the polymorphic outcome of indomethacin and concluded that it favored the formation of the α polymorph.
Keyphrases
  • carbon dioxide
  • room temperature
  • magnetic resonance imaging
  • magnetic resonance
  • mass spectrometry
  • single molecule
  • crystal structure