Login / Signup

The importance of exact exchange-A methodological investigation of NO reduction in heme-copper oxidases.

Margareta R A Blomberg
Published in: The Journal of chemical physics (2021)
Significant improvements of the density functional theory (DFT) methodology during the past few decades have made DFT calculations a powerful tool in studies of enzymatic reaction mechanisms. For metalloenzymes, however, there are still concerns about the reliability in the DFT-results. Therefore, a systematic study is performed where the fraction of exact exchange in a hybrid DFT functional is used as a parameter. By varying this parameter, a set of different but related functionals are obtained. The various functionals are applied to one of the reactions occurring in the enzyme family heme-copper oxidases, the reduction of nitric oxide (NO) to nitrous oxide (N2O) and water. The results show that, even though certain parts of the calculated energetics exhibit large variations, the qualitative pictures of the reaction mechanisms are quite stable. Furthermore, it is found that the functional with 15% exact exchange (B3LYP*) gives the best agreement with experimental data for the particular reactions studied. An important aspect of the procedure used is that the computational results are carefully combined with a few more general experimental data to obtain a complete description of the entire catalytic cycle of the reactions studied.
Keyphrases