Login / Signup

The Application of a Self-Made Integrated Three-in-One Microsensor and Commercially Available Wind Speed Sensor to the Cold Air Pipe of the Heating, Ventilation, and Air Conditioning in a Factory for Real-Time Wireless Measurement.

Chi-Yuan LeeJiann-Shing ShiehJerry ChenXin-Wen WangChen-Kai LiuChia-Hsin Wei
Published in: Sensors (Basel, Switzerland) (2023)
In this study, the integrated three-in-one (temperature, humidity, and wind speed) microsensor was made through the technology of the Micro-electro-mechanical Systems (MEMS) to measure three important physical quantities of the internal environment of the cold air pipe of the Heating, Ventilation and Air Conditioning (HVAC) in the factory, plan the installation positions of the integrated three-in-one microsensor and commercially available wind speed sensor required by the internal environment of the cold air pipe, and conduct the actual 310-h long term test and comparison. In the experiment, it was also observed that the self-made micro wind speed sensor had higher stability compared to the commercially available wind speed sensor (FS7.0.1L.195). The self-made micro wind speed sensor has a variation range of ±200 mm/s, while the commercially available wind speed sensor a variation range of ±1000 mm/s. The commercially available wind speed sensor (FS7.0.1L.195) can only measure the wind speed; however, the self-made integrated three-in-one microsensor can conduct real-time measurements of temperature and humidity according to the environment at that time, and use different calibration curves to know the wind speed. As a result, it is more accurate and less costly than commercially available wind speed sensors. The material cost of self-made integrated three-in-one microsensor includes chemicals, equipment usage fees, and wires. In the future, factories may install a large number of self-made integrated three-in-one microsensors in place of commercially available wind speed sensors. Through real-time wireless measurements, the self-made integrated three-in-one microsensors can achieve the control optimization of the HVAC cold air pipe's internal environment to improve the quality of manufactured materials.
Keyphrases
  • low cost
  • quality improvement
  • intensive care unit
  • physical activity
  • mechanical ventilation
  • extracorporeal membrane oxygenation
  • respiratory failure